$$\begin{align*}
\begin{pmatrix} x^\prime \\ y^\prime \\ z^\prime \end{pmatrix}\! &= \mathbf{K}\mathbf{H} \begin{pmatrix} \mathbf{v}^\mathrm{3D} \\ 1\end{pmatrix} \Leftrightarrow \begin{pmatrix}x^\prime \\ y^\prime \\ z^\prime \end{pmatrix}\! = \mathbf{K}\mathbf{H} \begin{pmatrix}U \\ V \\ W \\ 1\end{pmatrix} \Leftrightarrow \\
\textcolor{black}{\begin{pmatrix}x^\prime \\ y^\prime \\ z^\prime\end{pmatrix}\!} &= \textcolor{black}{\!\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}\! \begin{pmatrix}r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1\end{pmatrix}\! \begin{pmatrix}U \\ V \\ W \\ 1\end{pmatrix}}
\\
\Rightarrow x &= \frac{x^\prime}{z^\prime},~~ y = \frac{y^\prime}{z^\prime},~~ \begin{pmatrix}x \\ y \end{pmatrix} = \mathbf{v}^\mathrm{2D}
\end{align*}
$$
$$\begin{align*}
\begin{pmatrix} x^\prime \\ y^\prime \\ z^\prime \end{pmatrix}\! &= \mathbf{K}\mathbf{H} \begin{pmatrix} \textcolor{blue}{\mathbf{v}^\mathrm{3D}} \\ 1\end{pmatrix} \Leftrightarrow \begin{pmatrix}x^\prime \\ y^\prime \\ z^\prime \end{pmatrix}\! = \mathbf{K}\mathbf{H} \begin{pmatrix}U \\ V \\ W \\ 1\end{pmatrix} \Leftrightarrow \\
\textcolor{blue}{\begin{pmatrix}x^\prime \\ y^\prime \\ z^\prime\end{pmatrix}\!} &= \textcolor{blue}{\!\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}\! \begin{pmatrix}r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1\end{pmatrix}\! \begin{pmatrix}U \\ V \\ W \\ 1\end{pmatrix}}
\\
\Rightarrow x &= \frac{x^\prime}{z^\prime},~~ y = \frac{y^\prime}{z^\prime},~~ \begin{pmatrix}x \\ y \end{pmatrix} = \textcolor{blue}{\mathbf{v}^\mathrm{2D}}
\end{align*}
$$
$$\begin{align*}
\begin{pmatrix} x^\prime \\ y^\prime \\ z^\prime \end{pmatrix}\! &= \mathbf{K}\mathbf{H} \begin{pmatrix} \textcolor{blue}{\mathbf{v}^\mathrm{3D}} \\ 1\end{pmatrix} \Leftrightarrow \begin{pmatrix}x^\prime \\ y^\prime \\ z^\prime \end{pmatrix}\! = \mathbf{K}\mathbf{H} \begin{pmatrix}U \\ V \\ W \\ 1\end{pmatrix} \Leftrightarrow \\
\textcolor{black}{\begin{pmatrix}x^\prime \\ y^\prime \\ z^\prime\end{pmatrix}\!} &= \!\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}\! \textcolor{red}{\begin{pmatrix}r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1\end{pmatrix}\!} \textcolor{black}{\begin{pmatrix}U \\ V \\ W \\ 1\end{pmatrix}}
\\
\Rightarrow x &= \frac{x^\prime}{z^\prime},~~ y = \frac{y^\prime}{z^\prime},~~ \begin{pmatrix}x \\ y \end{pmatrix} = \textcolor{blue}{\mathbf{v}^\mathrm{2D}}
\end{align*}
$$
Can be solved with Perspective-n-Point algorithms.